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Groups of automorphisms of the canonical commutation and 
anticommutation relations 
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t Institut fur Theoretische Physik, Universitat Wien, Boltzmanngasse 5 ,  A-1090 Wien, 
Austria 
$ Institut fur Theoretische Physik, Universitat Graz, Universitatsplatz 5, Graz, Austria 

Received 21 March 1988 

Abstract. Observables of supersymmetric quantum mechanics are coded by taking the 
antisymmetric tensor product with anticommuting parameters. Next we define superunitary 
transformations, which mix bosonic and fermionic degrees of freedom, in order to construct 
automorphisms of the canonical (anti)commutation relations (c(A)cR).  Conversely, every 
automorphism of the C ( A ) C R  is implemented by an essentially unique superunitary transfor- 
mation. 

1. Introduction 

The concept of supersymmetry was invented and first developed within the framework 
of relativistic quantum field theory [ 13. Nevertheless, applications of supersymmetric 
algebras to systems with a finite number of degrees of freedom lead to many physically 
relevant problems [2]. For extensive surveys of physical treatments of supersymmetry 
see, for example, the reviews [3]. 

An axiomatic formulation of supersymmetric quantum mechanics (SSQM) has been 
introduced in [4], which can be rewritten conveniently in terms of sesquilinear forms 
[5]. Here we are working in the Hilbert space o f f  bosonic and f fermionic degrees 
of freedom, which is isomorphic to the tensor product of the Hilbert space of wavefunc- 
tions L 2 ( d )  times the Grassmann algebra o f f  anticommuting variables. 

In order to investigate transformations, which mix bosonic and fermionic degrees 
of freedom, an additional Grassmann algebra of g anticommuting parameters is 
introduced. Next we take the antisymmetric tensor product of that algebra with the 
C* algebra of bounded operators on our Hilbert space. The notion of a scalar product 
is extended to matrix elements of such coded operators with the help of the van Hove 
rule [6]. Unbounded operators are restricted to invariant domains and, similarly, 
coded by these anticommuting parameters. 

Next we define groups of superunitary transformations and use them in order to 
construct automorphisms of the canonical (anti)commutation relations (c(A)cR). Con- 
versely, we show that any two representations of the C(A)CR by coded operators, defined 
on suitable domains, are connected by an essentially unique superunitary transforma- 
tion. In that way we extend von Neumann’s uniqueness theorem [ 7 ]  to the linear 
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3240 H Grosse and L Pittner 

combination of bosonic and fermionic observables. These superunitary transformations 
are then combined with unitary transformations of the fermionic oscillator representa- 
tion of the C(A)CR. 

We note that various aspects of supergroups have been dealt with in recent 
publications [ 81. 

2. Fermionic oscillator representation of the C(A)CR 

We use the Grassmann algebra Fif of polynomials in the pairwise anticommuting 
variables ck, k = 1, .  . . , A  over the field of complex numbers @, in order to describe 
systems with f fermionic degrees of freedom. Any element C E %f can be expanded 
into 2/ monomials [9 ]  

where If denotes the unit element of the associative algebra %,-, Through the definition 
of a degree, i.e. deg C = 0 (deg C = l ) ,  if C is a linear combination of monomials with 
even (odd) p ,  (4; becomes an associative superalgebra. -yoIf gets degree zero, too. 
Elements of Yif, which are either even or odd, are called homogeneous. 

The derivative from the left with respect to Ck is defined via linear extension of 

where the notation gin means, that Cim has to be omitted. For a homogeneous element 
of degree deg C, we get 

I ) k  ( cc ') = ( Dkc ) c ' + ( - 1 ) c ( DkC') k =  1,. . . ,f (2.3) 

which shows that the endomorphism Dk is a graded derivative of %,-, 
The Grassmann algebra 3; of polynomials in Dk, k = 1, .  . . , A  is combined with 

the algebra 9if, fulfilling the canonical anticommutation relations (CAR) 

[ci, c k l + = o  [Di, Dkl+=O [ci, Dkl+ = 8iklf i, k =  1 , .  . .f (2.4) 
and yields the Clifford algebra Vf of polynomials in the 2f variables C, + Dk and 
i (ck-Dk) ,  k = l , . .  . , A  Over @. 

With the scalar product [ 5 ]  

%If becomes isomorphic to the f-fold tensor product Qf 43'. Its basic elements can be 
represented by the Klein-Jordan-Wigner transformed Pauli matrices 

& 2 : = ( 0  1 0  1> u 3 : = ( l  0) (r+:=(o 1) 

0 -1  0 0 '  

This scalar product implies that Dk = C:, k = 1, .  . . ,j 
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In order to combine these f fermionic degrees of freedom with an equal number 
of bosonic degrees of freedom in the spirit of SSQM, we define the tensor product 
X’ = XoO %’ of 24’ with a separable Hilbert space Xo. X’ can be decomposed according 
to the 2, grading of %,-. Let us denote the projection operators onto bosonic and 
fermionic states by No and NI, respectively. The Klein operator is then defined by 
K = No- N I  [ 6 ] .  The scalar product of states 9, @ E X’ is given by 

where (0 has a similar decomposition as 9. 
becomes isomorphic to the 2f-fold 

tensor product 8’ (L2(Iw’)0C2),  if one takes for 2t0 = L2(R’) the Hilbert space for f 
bosonic degrees of freedom. The closed operators in L 2 ( d )  

The separable Hilbert space 2’’ = L 2 ( d )  0 

f i  Bk := x k  + ipk f i  B: := xk - ipk 
(2.8) 

dom Bk = dom B: = dom xk n dom Pk k = l ,  . .  . ,f 
fulfil the canonical commutation relations ( CCR) 

[Bk, B:l-  I x  dom BkB: = dom B:Bk 
(2.9) 

in the sense of spectral families of position operators xk and momentum operators 
Pk. In equations (2.9) 1, denotes the identity mapping of L Z ( d ) .  

In the following, we shall use the shorthand writing Bk and c k  for &@If  and 
I x O C k ,  and similar abbreviations will be used for closed operators in L 2 ( d )  and 
endomorphisms of %,-. The CCR (2.9) are combined with the CAR (2.4) in 3’’ to the 
canonical (anti-) commutation relations (C(A)CR) 

[Bi,  B:1- 6ik1x [ci, c : ] + = S i k I  i, k =  1, .  . . ,f 

[Bi,  Bk]-=O [Bi ,  B:] -  = 0 i #  k =  1, .  . . ,f 

(2.10) 
[Bi,  Bk]-=O [cis c k l + = o  [Bi,  Ck] -=O [ B i ,  c:]- = 0 

which hold in the sense of spectral resolutions. Von Neumann’s theorem asserts that 
every irreducible representation of the C(A)CR in a separable Hilbert space is unitarily 
equivalent to the ‘fermionic oscillator representation’ (2.10) [ 7 ] .  For a more detailed 
statement see [ 5 ] ,  for example. 

The fermionic oscillator model is defined by the Hamilton operator 

(2.11) 

where the Klein-Jordan-Wigner transformation was used in (2.11). The 4 on the RHS 

of (2.11) denotes the form sum [lo]. The supersymmetric structure of this model is 
well known. 

3. Anticommuting parameters as coefficients of SSQM 

An axiomatic formulation of SSQM can be conveniently given in terms of sesquilinear 
forms [ 5 ] .  One thereby defines self-adjoint supercharges On, n = 1, .  . . , N, which act 
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in the separable Hilbert space X, Let No and N ,  be the projection operators onto 
even and odd states with No + NI = 1, and define the Klein operator as K = No - N ,  . 
Then one requires, that 

Q;= H dom Qn = dom n = 1 ,  . . . ,  N 

n # m =  1,. .. , N (Qn @I Q m q )  + ( Qm @I Qn 9) = 0 (3.1) 

(On @I K ‘W + ( K  @I Qn W = 0 Y, @ E  dom 

The supercharges map states from No% to N1 X and vice versa. H will be reduced 
by the bosonic subspace No% as well as by the fermionic subspace N I X .  

In order to construct automorphisms of the C(A)CR, which combine linearly bosonic 
and fermionic operators, and in order to respect the 2, grading, one introduces 
anticommuting parameters: Let 9, be the Grassmann algebra of polynomials in the 
variables Oi,  i = 1, .  . . , g, with complex coefficients. We construct the skew-symmetric 
tensor product 9 , @ B ( X )  of 9g with the C* algebra of bounded operators on X, 
which implies a 2, gradation. The orthogonal decomposition of X into bosonic and 
fermionic states enables one to consider B ( X )  as an associative superalgebra [ l l ] ,  
since any A E B ( X )  can be decomposed as A = ( N o A N o + N , A N l ) +  
( NOAN, + N,ANo) .  The composition law 

(0 @ A ) ( @ ’ @  A’)  := (- 1) degA.deg@’ (00’) 0 (AA’)  ( 3 . 2 )  

for homogeneous elements A and 0’ can be linearly extended to 9 , @ B ( X ) ;  it can 
be represented by an endomorphism of the algebraic tensor product 9, 0 X according 
to 

(3.3) 

The elements of such tensor products can be expanded into 2, basis elements of 

A, A ’ E  B ( X ) ,  0 ,  @‘E 91g 

(0 @ A)(  @’@q) := (- 1) degA.deg@’ (00‘) 0 (A*) Y €  X. 

9,, according to 

where I ,  denotes the unit element of 9,. 

on 9, by 
In order to extend adjointness to the tensor product (3.2), one defines an involution 

especially 07 = O j  and (@,ek)* = OkO, ,  i, k = 1,.  . . , g. This involution is extended to 
9, 0 B( X )  by 

(0 @ A )  * := ( I,  @ A t )  ( @* @ I ) 0 E 9, ; A E B ( X )  (3.6) 
where I denotes the identity mapping of X. In the following we shall suppress the 
symbol 0, and write 

@ @ A  = ( @ @ I ) ( I , @ A )  @ A  ( I , @ A ) ( O @ Z ) = A O  (3.7) 
and @ A  z ( - l )degA.dege A 0  holds for homogeneous elements A and 0. With that 
convention, (3.6) is rewritten as (@A)* = A t @ * .  
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For the special case 2 = Xf, the linear combinations of Ig  @ I f ,  1, @ ck, . . . Ckp, 
e,, . . . @ I, and e,, . . . Olq @ ck, . . . c k p ,  1 S i ,  < . . . < i, S g, 1 S k ,  < . . , < k, S A  with 
complex coefficients yield the Grassmann algebra with basis (0, , . . O,, C, , . . Cf}. 

Definition (3.3) is naturally generalised to unbounded operators by defining 

dom IgAo+C O i l . .  . a i P A i i ) )  ( {I} 

:= { oj, . . . dom A,,, ,  
( i }  

V ,{ j}  E dom AIi ,  for { i>n(j} = 0 . (3.8) 

Such tensor products shall be called coded operators acting on coded states. In 
the following, the domains of densely defined operators A and their adjoints are 
assumed to be graded, which means that V, E dom A implies KV, E dom A and also 
K dom At c dom At .  As a special case we note that the domain of an even or odd 
operator is graded. Using the relation @ A  = K A K O ,  which holds for odd 0 E ag, one 
extends the operation of taking the adjoint to coded operators by the rules 

I 

( I g A o + ~ ~ i l  . . .  o i p a , i } ) + : = A  ~ ~ g + ~ A ; i , o , p . . . o ,  {ii 
{ i )  

(3 .9)  

t t  ( I,Ao+C e,, . . . @ , A { , , )  = Z,&+C e,, . . . 
{ I )  ( 1 ,  

for closable operators A o ,  A, , }  in X. 
The algebraic tensor product 9, 0 X is not equipped with a topology, because the 

anticommuting parameters a,, i = 1 , .  . . , g, are not considered as operators, but merely 
as coefficients. The scalar product on X x X can therefore be extended to the following 
mapping from (9,O XI' into ag [ 6 ] :  

where we used the fact that K 2  = I. The rules (3.9) can therefore be understood as 
adjointness relations of the form 

(@'V,'~@A@'IV,") = (At@*@'9'I@"V,f') 

- - ( @*@'K d + d'At K d + d ' y ' I  @yp) 

V,'lV,(') -@l*o - .@ r , ( ~ d " ~ t ~ d + d '  

= et* 0 K d + d ' q  !I AK d " q q  

where the degrees of 0, e', 0" are denoted by d,  d ' ,  d" .  

(3.11) 
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4. Groups of supertransformations 

The Z ,  graded tensor product (3.2) can be used to construct groups of supertransforma- 
tions. Let A% be the associative superalgebra of linear operators G with a common 
invariant domain (e = dom G, which is dense in the separable Hilbert space X; therefore 
G V E  (e. X is assumed to be Z ,  graded with Klein operator K ,  and (e is assumed to 
be graded. By linear extension of the supercommutator [ 113 

[ G, G‘] := GG’- (-l)degGdegG G’G G, G’E A% (4.1) 

where G and G’ are homogeneous, A% becomes the Lie superalgebra Le. The 
skew-symmetric tensor product 9, @A, becomes an associative superalgebra, if we 
restrict states to be in (e and linear operators to be in A< in the definitions (3.2) and 

Let A*, be the subalgebra of linear operators G E A% such that dom G’? (e and 
G t % c  (e. The corresponding Lie superalgebra will be denoted by L:. For the skew- 
symmetric tensor product 9, 0 A*,, which is an associative superalgebra, one can define 
an involution by linear extension of 

(OG)*:= (OG)tla,mv (OG)** = O G  G E A*,, 0 E 9,. (4.2) 

The coded operator T E  %,@A*, is called superunitary on 92, iff it fulfills the 

(3.3). 

conditions 

T=Z,OIl.+p3,, . .  .OfPT(, ,  T * T =  TT*=Z,011,. (4.3) 
{ I )  

In (4.3) T(, )  is assumed to be even (odd) for even (odd) p ,  such that T is an even 
linear bijection of the algebraic tensor product 9, 0 %. 

If Tl and T, are superunitary, TlT2 is superunitary too. The set of superunitary 
operators on (e therefore becomes a group with unit element ZgOlle, and the inverse 
elements are obtained with the help of the involution defined above. For some fixed 
invariant common domain % this group will be denoted by U%. 

Let Ok, k = 1,. . . , q, be homogeneous elements of 9, such that (ek)’ = 0, and let 
Gk be out of L% such that OkGk is even. We define the exponential exp (O’G, +. . . + 
WG,) by the series expansion, which becomes just a finite polynomial, since (O’G, + 
. . . +04Gq),+’ = 0. By convention we restrict the exponential also to 9,O (e. As an 
example we note that for G E  Le, O G  even with 0 2 = 0 ,  

exp(tOG):= I,OZl.+tOG (4.4) 
for t E K, which we take to be either R or C.  

relations. 
In order to investigate groups of exponentials, we need the following commutation 

Lemma 4.1. Let G and G‘ be homogeneous elements of L%, let O2 = 0” = 0, and O G  
and O’G’ be even. Then we find the relations 

[exp ( tOG),  exp(t’OG’)]- = -tt’OO’[G’, GI = tt’O’O[G, G‘] (4.5) 
and therefore, for t, t ’ ,  s, s’EH, 

exp( tOG) exp( t’O’G’) exp(sOG) exp(s’O’G‘) 

= exp[( t + s)OG] exp[(t’+ s‘)O‘G‘)] exp(st’OO’[ G’, GI). (4.6) 
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One-parameter groups {exp t@Glt E W} of exponentials (4.4), with unit element 
IgOZlu, give representations of the additive group K and can be used to construct 
automorphism groups of the C(A)CR. 

Next we investigate the multiple supercommutators of operators E Lv, which arise 
if one takes products of exponentials of the form (4.4). For each ordered multi-index 
{ i} = { i l  , . . . , ip}, 1 s i, < , . , < ip s g, we choose some homogeneous element Gf,)  E Lv 
of degree 0 (or 1) for even (or odd) p ,  and construct the commutative one-parameter 
group {TI , (  t ) l t  E W} of exponentials 

T,,}( t )  := exp(t@{,)G{,)) (4.7) 

with e{,):= O,, , . . OlP, which we call supertransformations. The G,,, will be called the 
generators of these transformations. If especially G{,) E L*, and 

G{,] E (-l)9*1Gil) p = 2 q  or 2q-1 ;   EN (4.8) 
where p denotes the ‘length’ of the multi-index { i}, then the supertransformations 
T, , , ( t )  E 9,OA*, become superunitary: 

TT,,(t) = Tt,(-t) TT,,(t)T,,,(t) = q f ] ( t ) q 3 t )  = (4.9) 

for t E R. The generators G{,) need not be (antilself-adjoint in general. 
The set of finite products of supertransformations (4.7) forms a group 9 under the 

product (3.3), if we restrict it to 9,O %. From (4.8) it follows that a supertransformation 
T E  3- is superunitary, if its generators are (anti)symmetric. 

Lemma 4.1 allows us to describe the group 9 with the help of finitely many 
parameters. For the case g = 2, for example, an easy iteration of (4.6) yields lemma 4.2. 

Lemma 4.2. For g = 2 we choose G I ,  G2 and G I 2 e  Ls, with GI2 even, and G I ,  G2 
odd. Every supertransformation T E 9 can then be described by four real (or complex) 
parameters 

T =  exp(t ,@,GJ exp(t2@2G2) exP(~l2@,@2[Gl, G21+) 
x , f 2 ,  f 1 2 ,  s I2  E W. (4.10) 

The number T of independent real (or complex) parameters, which one must fix, 
T is superunitary iff the three generators are symmetric. 

in order to label the elements of the group 9, is finite due to the following lemma. 

Lemma 4.3. T is equal to the number of linearly independent multiple supercommu- 
tators of generators G{,k} with disjoint multi-indices {ik}, k = 1, . . . , q. 

In order to include the generators themselves we denote them as zero supercommu- 
tators. Note that the group 9 is constructed from a fixed family of generators G{,,, 
{ i } = { i l  ,..., ip}, l s i l <  . . .  < i p < g .  

If one introduces more than one, but a finite number of generators for an ordered 
multi-index {i}, the group of finite products of supertransformations of type (4.7) is 
given by linear combinations of the generators belonging to the same multi-index, and 
by all linearly independent multiple supercommutators of such linear combinations. 

5. Implementing automorphisms of C(A)CR 

The superunitary transformations introduced above can be used to construct 
automorphisms of the C(A)CR. In order to simplify the notation, we introduce the 
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operators 

Bk I 
{ C k , ,  

if i = 0, 
if i =  1 ,  k =  1 , .  . . ,f A;,o := 

on an appropriate invariant domain Vf := %,@ FIf, which is dense in 2;. One may, for 
example, take %‘, = S ( d ) ,  the rapidly decreasing C”-functions. The following lemma 
is easily derived. 

Lemma 5.1. Let T , , ) ( t )  be the superunitary transformations defined in (4.6) to (4.8), 
and take %:= 3, and Fe := %‘p The C(A)CR are then conserved under these supertransfor- 
mations in the sense that 

[A:(  t ) ,  A{’( t ) ]  = 0 

A ; ( [ )  := T,,,(t)A;,oTT,,(t) = T,t , ( t )A; ,oT{,)(- t )  

[ A ; ( t ) ,  A:’*(?)]  = &$,lf, z{ := ZgiZIE, 

(5.2) 

t E R  i , j = O , l  k, I =  1 , .  . . ,f. 
It is simple to decompose such supertransformations following the notation of 0 4. 

Lemma 5.2. Let A E Le and G‘ be a homogeneous element E Le, @,e’ E 2Jg with Of2 = 0 
and let O’G’ be even. Then one obtains 

(5.3) exp(@’G’)OA exp( -@’G’) = @ A  + @@’[ G’, AllDgOz. 

By taking products of superunitary transformations (4.7)-(4.9) we define the following 
automorphism of the C(A)CR: Take A E Lw and let 

TI= n exP(t(f)@{l,G(l,) = n T d t i l ) )  ti l)  E (5.4) 

with (anti)symmetric generators G(,,E Le like in (4.8). The product in (5.4) is ordered 
such that qll stands to the left of To, , q )  if p > q, or if p = q and i ,  > j , ,  or if p = q 
and i ,  = j ,  and i2 > j 2 ,  etc. T is superunitary in the sense of (4.3). Using (5.4) we get 
the following expansion of TAT* into multiple supercommutators 

where the sum runs over all possible choices of pairwise disjoint ordered multi-indices 
{ik}, k = 1 , .  . . , q, which are then ordered according to the product (5.4): @ { l k ,  is put 
to the left of e,,,, for k < 1, if is put to the right of TI , )  in the product (5.4). 

Lemma 5.1 can now be iterated to lemma 5.3. 

Lemma 5.3. We take %:= 2, and %’ := Ce,, and obtain from the superunitary transforma- 
tion T defined in (5.4) an automorphism of the fermionic oscillator representation of 
the C(A)CR by 

A::= TA;,,T* 

[A: ,  A{’] = 0 

i , j = O , l ;  k , l = l ,  . . . ,  f 
[A: ,  A:”] = &c~~,Z{. 

(5 .6 )  

Conversely, every automorphism of the C(A)CR can be implemented by a superuni- 
tary transformation in the following sense. In order to simplify the proofs, we treat 
first the case of one anticommuting parameter 0 = @*. 
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Theorem 5.1. Assume that the linear subspace %,:= FeO@ 3, of Y,, where %, is dense 
in L 2 ( @ ) ,  is an invariant domain for the linear operators A;, and their adjoints, i, 
j = 0,1,  k = 1, . . . , f;  j = 0 denotes the fermionic oscillator representation (5.1). At,, is 
odd and A;,, is even. Define 

A ;  := + @A;,,  @=a*; e*=() 
(5.7) 

A ~ = A ~ ~ o f + ( - l ) " ' ~ A ~ , , ' ~ ,  

and assume that these coded operators fulfil the C(A)CR: 

i = O ,  1; k =  l , . .  . , f 

[Ai,  A:] = 0 [Ai,  A{*] = SkrS, ,I / , .  (5.8) 

It follows that there exists exactly one symmetric odd operator G on dom G = Fe,, 
such that G%,c %,, which generates the automorphism (5.7) in the sense 

A i  = exp(@G)A;,, exp(-OG) 
(5.9) 

A'* k -exp(@G)A;,o' - exp(-0 * G )  

which means that 

Ai,, = [G, AL.01 k = 1, . . . , f ;  i = 0 , 1  (5.10) 

ROO$ The 22f monomials 

C{O;O} := I, q p ; o } : =  * . * c;, c{o;s} := c,, . . . c, 
c{p;4} := CiI . . . c;,c,, . . . cqs 

(5.11) 
l s p l <  . . .  < p , s f ;  l s q l < . .  < q s G f  

form an operator basis for 3p Any element can be expanded as 

= Ai(P.4)Clp;q! i = O ,  1; k =  1, .  . . , f 
{P;4)  

(5.12) 
dom Ai,{P;q}t k, 1 2 dom A'&;q} = %,,? A:(f;q)%," Ai:f;'7}'Feo. 

If one inserts (5.7) into (5.8), one obtains the supercommutation relations 

[@A&, Ai,:'] + [Ai,,, (@A{,,)'*'] = 0 (5.13) 

where (*) means that the involution is either done in both expressions or in none of them. 

i , j = O , l ;  k , l = l ,  . . . ,  f 

Using the (anti)commutation relations 

[Ck, C{p;q)I = ( - l ) l - l ~ ~ p I . . . p , ~ l p , +  I. . .  p,;q} for k = p ,  (5.14) 

leads to 

( _ l ) ' A ~ ( I P i . . , P , - i P , + i . . . P , ; q }  = ( -l)flAl, m.1 (P,...P"-lP"+,,,,P,;q} k = p , ;  m = p f l .  (5.15) 

It follows that the generator 

G := C [(-l)'-iAk;l 1 (P~. . .P,- ,Pl+, . . .P~;o} C{p;o) + adjoint] 
{ P) 

is well defined. Using (5.13) one finds that G is symmetric and fulfills (5.10). 

(5.16) 

This result can be generalised to finitely many anticommuting parameters in the 
following way. 
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Theorem 5.2. Assume that the linear operators A;,,,, E L$,, i = 0, 1, k = 1, . . . ,1; { i} zs 

{ i l  , . . . i p } ,  1 s i l  < . . . < ip  s g, are defined on the invariant domain %', := Yo@ %,, where 
V, is dense in L * ( d ) .  A;,, denotes the fermionic oscillator representation (5.1). Let 
@,,,A;,,,  be even for i = 0 and odd for i = 1, where e,,) := O, ,  . . . O l p .  Assume that the 
coded operator 

A;:= A$o+C @{,}A;,{ , }  k =  1,. . . ,f 

A;: = ACO+C ( - 1 ) p l + 9 0 { , ~ A 2 , { l } t l V ,  (5.17) 
i s )  

{ i } = { i l ,  . . . ,  i2q-l} or {i} = { i l , .  . . , i2¶} q c N  

fulfill the C(A)CR, 

[A;, A:] = 0 

Then there exist (anti)symmetric operators GI,) E Lg,, 

[ A ; ,  4 ' 1  = &r4J/, i , j = O ,  1; k, I =  1,. . . ,f: (5.18) 

G{,} c (-l)q+lGizI 
(5.19) 

{i} = { i l ,  . . . , i2q-l}  or { i} = { i l ,  . . . i 2 q }  9 c N  

which are odd or even, respectively, such that the superunitary transformation 

T : =  n exp(@{,}G{,)) T * T = n * = I <  (5.20) 

with the ordering defined in (5.4), implements the representation (5.17) of the C(A)CR 

in the sense that 

A;  = TA;,,T* A: = TA;,,*T* i = O ,  1; k=l, . . . ,  f: (5.21) 

These generators are essentially unique in the following sense: For { i, , . . . , i2¶-,}, 
Gill is unique; for { i l , .  . . , i29}, the difference of two generators fulfilling (5.19)-(5.21) 
is proportional to a constant, G{,)- Gill  = ip'2+1cZlq,, c E R, {i} = { il , . . . , i p } ,  if we 
assume that this difference is essentially self-adjoint on 'G;:= S(I@)@ CS,, where S ( d )  
denotes the Schwarz space of rapidly decreasing C" functions. 

Corollary 5.1. Under the conditions of theorem 5.2, the generators fulfil the multiple 
supercommutation relations 

A: =A,o+C @ { i , }  * . 9 @{iq)[G{iq}, [. - . [Grill, Ai.01. * * I I  i = O ,  1; k =  1,. . . ,f 
(5.22) 

with the same ordering as in ( 5 . 5 ) .  

Remark. The C(A)CR (5.18) especially imply that the A;, fulfil this algebra on VP But 
the C(A)CR on 'G; do not imply the unitary equivalence to the fermionic oscillator 
representation (5.1). Therefore we insert this special representation into the assump- 
tions of theorems 5.1 and 5.2. Of course, it can be replaced by any unitarily equivalent 
representation. 

The operator family, (5.17) and (5.18), will be called a coded representation of the 
C(A)CR on the invariant domain Wf. 
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Proofoftheorem 5.2. Inserting (5.17) into (5.18) one obtains, in a first step, 

[OmALm, Aj,g’]+[AL,o, (@mAj,m)“’]=O 
(5.23) 

similarly as in equations (5.13) in the previous proof. It therefore follows, according 
to (5.16), that there exist symmetric operators Gm E L*,l such that 

(5.24) 

i, j = 0 , l ;  k, I = 1, . . . , f;  m = 1, . . . , g 

AL,m = [ G m ,  AL.01 i = O , l ;  k = l ,  ..., f ;  m = l ,  ..., g. 

In the second step, we redefine 

AL,im,n}’:= AL,,m,n,-[Gn, [ G m ,  A;,011 (5.25) 

and obtain the supercommutation relations 

[@m@nAL,{m,n)‘, A:,:’] + [AL,o, (@m@nA’/,{m,nl’)(*’] = 0 
(5.26) 

Similarly as in the proof of theorem 5.1, one shows next the existence of symmetric 
operators G{m,n} E L*,,, such that 

(5.27) 

We continue this procedure. Before doing the ( p +  1)th step one has established 
the existence of (anti)symmetric generators Go} for { j }  = { j ,  , . . . , j r }  with r = 1 , .  . , , p ,  
as stated in (5.19), and does again a redefinition 

i , j = O , l ;  k , l = l ,  . . . ,  $ 

Ak{m,n)’= [ G { m , n ) ,  A$01 1 d m < n 6 g.  

where again the ordering of (5.5) is applied. The sum in (5.28) runs over all pairwise 
disjoint multi-indices { i m } ,  m = 1 ,  . . . , q, {im} = { i l ,  . . . , i r } ,  r = 1, . . . , p ,  such that u“,l{i,} = { i } .  Inserting (5.28) into (5.17) and (5.181, we obtain the supercommutation 
relations 

[@{,)Ai{,)‘, A:,:’] + EAL.0, (@{~}A’,,{,,’)(*)l = 0 (5.29) 

from which one concludes again the existence of (anti)symmetric generators G,,,, as 
proposed in (5.19). These generators fulfil the supercommutation relations 

(5.30) 

i , j = O , l ;  k , I = l ,  . . . ,  f 

A;{, , ’= [GI,}, 4 0 1  { i }  = { i , ,  . . . , ipTl}. 

Finally, one obtains the expansion (5.22), which is equivalent to the result (5.21). 

That the odd generators G,i, are unique follows from their (anti)symmetry. Essential 
uniqueness of the even generators is implied by the Kato condition [12, p 2871, if we 
use that (Bk+Btk+iI,)%o= %o=(Bk-B:k+I,)%ofor Z o : = S ( d ) .  Here I,  denotes the 
identity map of L2(R). 

Example 5.1. For the case of two anticommuting parameters, g = 2, 

A; := AL,o+OlA;1 +02A;,2+0102Ahl2 

AL,m = [ G m  7 AL.01 

AL.,2=1G2, [GI, AL,oll+[G12, AL.01 
T : =  exp(O102G12) exp(02G2) exp(OIG,) 

m = 1 , 2  
(5.31) 

i = O ,  1;  k = l , .  . . ,f 

where GI and G2 are odd and symmetric, and GI2 is even and symmetric. 
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Example 5.2. In the case g = 3, one obtains 

Ail23 = [ G3, [ G2, [ GI A;,oIlI + [ G23 [ GI  9 AZ.031- [ G13 [ G* 9 ALoII 

+ [ Giz, [ G3 9 A;,oIl+ [ G123 Ai.01 i = O ,  1; k = l , .  . . ,f (5.32) 

where GI23 is odd and antisymmetric. 

Example 5.3. If we use self-adjoint supercharges Qn, n = 1, .  . . , N, which obey the 
axioms (3.1), as generators G, := tnQnlw,, we obtain the direct product of N groups of 
superunitary transformations of the form 

N 
T (  t , ,  . . . , t N )  := n exp(@,G,) = exp 

, = I  

T (  t )  T (  t ’ )  = T(  t + t ’ )  t ,  ?’E w. (5.33) 

Example 5.4. If we insert an even number of self-adjoint supercharges Qn, n = 1, . . . , N ;  
N = 2 M ;  M E N, into the generators in the form 

Gm := t m Q M + m  + rM+mQmIv ,  tm, f M + m  E R  
(5.34) 

GM+m := tmQm - f M + m Q M + m l W ,  m = l ,  . . . ,  M 

we obtain the following group of superunitary transformations: 

T(sl,. . . , S M  ; r l , .  . . 1 rM)  

(5.35) 

sm := ( tm + i t M + m ) / f i  rm E R 

The group composition law 

T ( s ;  r ) T ( s ’ ;  r‘)= T ( s + s ’ ;  r l + r { + 2 1 m s i s f , . .  . , rM+rb+21ms’ , s$)  
(5.36) 

S , S ’ E C ~ ;  r, r’ERM 

shows that we get the direct product of M groups of superunitary transformations, 
where each group is described by three real parameters. 

6. Groups of automorphisms of the C(A)CR 

For simplicity reasons, let us denote the families of coded operators { A : }  and 
defined in (5.1), (5.17) and (5.18) by A and Ao,  respectively. Theorem 5.2 implies that 
the coded C(A)CR representation A on Tf is implemented by an essentially unique 
superunitary transformation T E  Ed,@A&, such that A = TAoT* according to (5.20) 
and (5.21). Vice versa, any superunitary transformation T on %?,- implements the coded 
C(A)CR representation A = TAoT* on Fe,. 
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Let Aj := T,AoT;, j = 1,2, be two coded representations of the C(A)CR, which are 
implemented by superunitary transformations T, on %,. This implies that A2 = TAI T*, 
where the superunitary transformation T : =  T2TT on Ce,. 

is defined as a linear bijection of the 
associative superalgebra 9,OA%,,.  which is compatible with the product of coded 
operators on 9,O(e, as well as with the involution (4.2) on 9 ,OA$, .  Therefore, a 
family of coded operators A fulfilling (5.17) and (5.18) is mapped onto A', which 
again satisfies the propositions of theorem 5.2. Due to this theorem, such an automorph- 
ism T determines an equivalence class of superunitary transformations T, such that 
r (AO)  = TAoT*. Iff T ( A )  = TAT* holds for all C(A)CR representations A on Vf, T is 
called an inner automorphism of the C(A)CR on Tr. 

form a group, which will be implemented 
by the group Us, of superunitary transformations T on Vr due to the group 
homomorphism 

An automorphism T of the C(A)CR on 

The inner automorphisms of C(A)CR on 

T -+ T (  S )  := TST* S E  9 , @ A $ ,  T E U%,. (6.1) 

Theorem 5.2 tells us that the set of all coded representations of the C(A)CR on Vr is 
given by the family { TAoT*l T E U%,}. The question, under which additional conditions 
an automorphism of the C(A)CR on ie, is an inner one, remains open. 

These superunitary transformations can be combined with unitary transformations 
of the fermionic oscillator representation Ao,  by transforming just the invariant domains 
appropriately. 

Lemma 6.1. Let U' and U" be unitary operators on 2':= L2(l@)O%r, and denote by 
%'e;:= U'%' and C;! := U''U'%j the transformed invariant domain Ur := Fe,@ Sf of the 
fermionic oscillator representation (5.1). With the superunitary transformations T' 
and T" on %+ and %;, define 

A' := T' U'Ao U" TI*. (6.2) All := TI1 UIIAI Ullt Til* 

Here we use U' and U" as a shorthand writing of the skew-symmetric tensor product 
I , @  U' and I ,@ U". Then there is an appropriate superunitary transformation T on 
%; such that 

(6.3) 

T is essentially unique in the sense of theorem 5.2. One may choose T : =  T"U"T'U"'. 

A" = TU" U'Ao U'' T*, 

Proof: A" fulfills the propositions of theorem 5.2, with A.  replaced by U"U'AoU'' U''+. 

The unitary transformations, which are used in lemma 6.1, need not be graded, but 
the superunitary transformations conserve grading in the sense of (4.3). 

Example 6.1. If we start from example 5.4 with a Hamilton operator H : =  Q:, n = 
1,. . . , N,  and an invariant domain YZf E dom HI'*, the group of superunitary trans- 
formations (5.35) implements an automorphism group of the C(A)CR with N anti- 
commuting parameters. Following lemma 6.1 one can combine these superunitary 
transformations with the time evolution and form the product exp(itH) T(s, r ) ,  s, r 
[ W N 1 2 ,  t € R .  
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Since the transformation UAU? of some coded C(A)CR representation A on Vr by any 
unitary operator U on 9, yields another coded C(A)CR representation on UWr, the 
inverse (TU)*  = Ut T* will transform any coded C(A)CR representation A' on %j:= U%', 
into another one on Yp T above is assumed to be superunitary on %'j, such that Ut TU 
is superunitary on 'G; according to the following diagram: 

U 
Ao-  Al, 

U'TUI I T  
U 

A - A '  

in which 

Al, := UAo U' A' := TAl,T* = UAUt A:=  UtA'U.  (6.4) 

More generally, an automorphism T of the C(A)CR on %'j= U%'r is combined with 
the unitary transformation U of 9, to the mapping A ' =  T 0 v ( A ) ,  which transforms 
any coded C(A)CR representation A on Vr to another one A' on %'j, with an implementing 
superunitary transformation T on %'j such that A'= TUAUtT*, where v ( A )  := UAU'. 
In general, T will depend on the choice of A. 

The group homomorphism (6.1) can be generalised to products UTV with unitary 
operators U, V on 2, such that U%',= VY,= %'p 
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